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If a self-similar solution is to be an asymptotic representation of a specific class of not 

self-similar motions, it must be stable with respect to small perturbations. Proof of the 

stability of self-similar solutions of the second kind of the Cauchy problem is given in 

linear approximation for the equation of elastic-plastic filtration mode derived in [l]. 

The solution of a similar axisymmetric problem is constructed. 

1, As shown in [l], the self-similar solution of the Cauchy problem for one-dimen- 

sional equation of elastic-plastic filtration 

is of the form I 
[,rn--i, (3c. t) -= -t-- / (4). 
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Here function f is expressed in terms of parabolic cylinder functions determined by 

the system of equations 

I)A+, (;,] / 1/z (I, ‘II (-- 1 ~~- ‘li+, ri>; ‘/&;,;Y’) m: i’. F a.,‘) ’ ‘II2 (1.3) 

with the exponent c( snd the value of $ ~- F1, such that ij~ j (3~ o when x ~7 rO (fj 
= z,, /.7 c ,1,-t _ 

I,et us consider the solution of a Cauchy problem with initial data defined at a certain 

instant t,, are defined by the weakly perturbed self-similar solution 
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u,,- u (I, to) = A If (5) + pc (i, to)] (a,?,)‘“‘(‘+“’ 
Here p is small and function v (j, to) is such that u (5, to) and the self-similar solution 

have only two points of inflection. The surface on which du I at = 0 is, also, subject 
to perturbation and moves according to the law 

210) - [:,o + 31 (t)] V/nl”t, 5: (t) = - (to +- 9, (t)] l/nl?t 

Substituting the perturbed solution into (1.1) and passing to variable r = In t, we 

obtain the equation 
C% atv 5 av 1+x A_ 
at --Ep+Tz+2V (0 d 4 < Co) 

(50 d E d 50 + Pl 0)) (1.4) 

au azv E av 1+cl --- 
at -at2 +~~-l-~V (50 + PI 0) d E < 00) 

and similar equations for E < 0. 
Linearizing the condition au / at = 0 at E; = go + P1 (t), we find 

[ 

av 1+a 
P-&-TV 1 _4=45 

- y f’ (Co) Pl (t) =o 
Hence the shift of the boundary & (t) is proportional to the value of the small per- 

turbation. When E = go, the derivative r12f I dE2 = 0 ,consequently the inhomogeneity in 
the intermediate region does not result in a discontinuity of av I 85 for IL - 0. Lineariz- 
ing (1.4), we obtain for u the linear equation 

Here v and dv / az are continuous when 5 -z io. 

Let us assume that v = Zw,(&xp (- l12&,~). To prove the stability it is necessary 

to show that all eigenvalues of h are nonnegative and that with t -t 00 the rate of 
decrease of perturbations of the self-similar solution is not slower than that of the solu- 

tion itself. For function w (E) we have the equation 

Here w and dw / dg must be continuous for 5 = ko. It is readily seen that the spectrum 

of this problem is discrete. 
Within the limits of linearized theory it is sufficie.nt to consider separately the sym- 

metric and the skew-symmetric perturbations, wl’ and w2’ , respectively. 

The symmetric solution of Eq. (1.5) satisfying the conditions at E - CO is of the form 

W1° = 

i 

Cl exp (- %E20 [D,,,. (El v%, + Da+), (- 4/ v%l, I 4 I d Eo 

C2 e=p (-- %E2) Da+A (I 5 I/T/% I4 I > CO 

Here D, (z) is a parabolic cylinder function. The characteristic equation for h , after 
passing to degenerated hypergeometric functions, reduces to 
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* (a) = (a + 2~ + 1) Da+>, (5n)M (-1 - ‘/2 (a + a), ‘I’~; ‘/2<o*e-‘) 4 

i- Du+i.+: (Wf (- ll, (a + a), l/z; 11,502e-1) r= o (1.r;) 

Here a and Lo = E, / v/a are defined by (1.3). It will be readily seen from (1.3) that 
& = 0 is a root of Eq. (1.6). We shall prove that its remaining roots are positive. We 
transform Eq.(1.6) to the form 

A (A) = W;l+,.+i (5”) M(--i-i/, (a + h), i/2; 1/2s02a-‘) + 

t- D a+).+2 (Ca) IM (-- l/2 (a + A), ‘12; %bo2s-‘) - (1.7) 

- 111 (-1 -.- ‘i, (CL + h), ‘/2; r/z PO2 s-l)] = 9 

According to p], M ((I -+ 1, I/._,, x0) is a monotonically increasing function of I when 

1 > (1. and xn is the smallest positive root of equation 111 (a, li2, 1) --= 0. If go is the 

smallest positive root of equation I), ,‘, (Q = 0, then Dj++ (5,) > (I for h < 0. Hence 
A (1.) > 0 for h < 0. 

The analogous skew-symmetric solution is of the form 

Comparison of this equation with (1. 7) shows that the smallest root of Eq. (1. 9) is 
X1 = 1. Hence the selfysimilar solution is stable with respect to small perturbations. 

The analysis shows that ?L~ 2 is the smallest positive root of Eq. (1.6), and h, 2 
is the corresponding root of Eq. (1. 9). For considerable periods of time the asymptotic 
solution may be presented in the form (1.10) 

as was done in [3]. 
The constant cg is, generally speaking, nonzero, and this confirms the indeterminacy 

of constant A in the self-similar statement of the problem in [I]. 

2. The stability of a self-similar solution of the dipole kind is analyzed in a similar 
manner El]. The perturbable solution is of the form (1.2), where a and E0 are determined 
from the system D 

ti+2 (50) 0, ilil (-ri:2c(, 312; 112; <‘” e-‘) :: (I 

Perturbation v (5, I) must vanish at E == 0 , and the eigenfunctions 1~‘ (5) are then 

defined by expression (1. 8). The characteristic equation is of the form 

(t/. )- 2.) LJa+,, (51,) 111 ( ‘12 (a + h -f- I), 3j2; ‘i,c20e-‘) -j 
+ I) ii- ,+? i;,,) 31 (: 'i, (a+ A + I), 3/2; '/_<z"&-') =- 0 

The smallest root of this equation is h - 0,. i.e. the dipole type solution is stable. 

3. Let us construct by the method proposed in [1] a self-similar solution of the prob- 
lem of elastic-plastic filtration from a momentary axisymmetric source. 
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For the equation of the elastic-plastic filtration mode 

we formulate the nonself-similar Cauchy problem with axisymmetric input data 

(3.1) 

(3.2) 

(p is a cylindrical coordinate). 

Dimensional analysis makes it possible to present the solution in the form 

The assumption that for rl tending to zero function F has finite asymptotics is valid 

only in the linear case E_= I. II 

Fig. I 

and satisfies the condition 

may be generally assumed that there is an a such that 
for 11 + 0 there exists lirn [neaF (5, n; a)] = f (E; F). 

The self-similar solution of the problem (3. I>, (3.2) is 

then sought in the form 
uo - u (I’, ‘) = (&;+%a / (5; e) (3.3) 

The equation of the function assumes the form 

d21 & -@ -t [F -t -$) g +- LF j = 0 (0 <c ;;@;) 
-J 

d”f 2-j-r 
~,-(+-t~,g+---- 2 i=O (bd4<~) 

The solution of Eq. (3.4), which is regular for j .= 0 

co 

s 
0 

is expressed in terms of hypergeometric functions M and IT @‘j 

The condition that du /at ==0 at p = &, I/D yields for the determination of a 
and EC the system of transcedental equations 

M (- I/p, 2; Z,E-‘) - &% I! (--1‘- ‘/$C, 1; Z,,&-I) = 0 

(10 = ‘/r$j2) 

1,: (- l/&L, 2; Z,)) + 2ll (-f - ‘/‘& 1; zO) = 0 

Values of o calculated for several F are given below 

F. = 1.1 1.2 l.:i 2.0 3.0 4.0 
a = 0.03 0.065 0.16 0.32 0.57 0.81 

The pattern of the dependence a (e) is shown in Fig. 1. For e z 1 we have cc = 0, 

thus yielding the conventional solution of Poisson. For E > 1 we obtain, as in the one- 
dimensional case, a > (I . 

The author thanks G, I. Barenblatt for posing the problem and G. I. Sivashinskii for his 
attention to this work, 
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